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Abstract
We apply the recently defined Lambert W function to some problems of
classical statistical mechanics, i.e. the Tonks gas and a fluid of classical particles
interacting via repulsive pair potentials. The latter case is considered both from
the point of view of the standard theory of liquids and in the framework of a
field theoretical description. Some new mathematical properties of the Lambert
W function are obtained by passing.

PACS numbers: 05.20.−y, 64.10.+h

1. Introduction

The Lambert W function is defined as the multivalued inverse of the function w �→ w ew. Its
mathematical properties have been explored only quite recently after its implementation in
the mathematical library of the computer algebra program Maple. The history, applications
and properties of Lambert W are reviewed in Corless et al [1]. Mathematical developments
and applications to physics (mainly in quantum mechanics and electrostatics) can be found in
[1–4]. Since W is a very simple function, all its applications to physics or other fields are not
exhausted, and, after a short enquiry, I have discovered that many of my colleagues, aware or
unaware of its name, have met the function in their own works [5–7].

Here we reformulate some old and new problems of the statistical mechanics of classical
liquids in terms of Lambert W.

Our paper is organized as follows. In section 2 we commence by refreshing the reader ideas
with some known mathematical properties of W(z). We focus on the principal branch W0(z) of
the Lambert function and the related function U0(z) = W0(z) + W 2

0 (z)/2, both being of prime
importance for their applications to the problems of statistical mechanics considered in this
paper. Some new mathematical properties of W0(z) and U0(z) used in the paper are presented
in the appendix (the Legendre transforms of the real functions x ∈ R, x �→ W0(exp(x)) and
x �→ U0(exp(x)) are computed and the dispersion relations for W0(z) and U0(z) established).
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In section 3 we reformulate the properties of the Tonks gas [8], i.e. a one-dimensional (1D)
classical fluid of hard rods, in terms of the principal branch W0(z) of the Lambert function.
Our presentation is compared with the seminal work of Hauge and Hemmer on this system
[9]. The introduction of Lambert W0(z) allows to recover all the properties of the model in a
unified treatment.

In section 4 we focus on the second system considered by Hauge and Hemmer in [9], i.e.
a classical 3D fluid made of particles with intermolecular pair repulsions of the form

ϕ(r) = γ 3φ(γ r) (1.1)

where φ is a positive integrable function. The extension to arbitrary dimension is trivial. In the
limit γ → 0 which will be considered, we deal with infinitely weak and infinitely long-range
repulsive interactions. Once again, the use of the functions W0(z) and U0(z) is of great help
for describing in a unified manner all the known properties of this model.

Section 5 contains new material. We consider the field theoretical representation of a fluid
of particles interacting via repulsive potentials in the framework of the formalism developed
in [10]. It is shown that at the mean-field (MF) level of the theory the expressions for the
pressure and the density are identical to those derived in section 4 for the fluid with weak
long-range repulsive interactions. In other words, the MF approximation is exact in the case
of infinitely long-range interactions, a satisfactory, although expected result. We conclude in
section 6.

2. A digest on Lambert W

In this section we summarize the main mathematical properties of the Lambert W(z) function.
W(z) is defined as the root of

W(z) eW(z) = z (2.1)

where z is a complex number. For a given z, equation (2.1) has an infinite number of solutions
and thus W(z) is a multivalued function. Its properties have been studied recently in [1–4].
The different branches of Lambert W (i.e. the different possible solutions of equation (2.1))
are labelled by an integer k = 0,±1,±2, etc. When z is a real number equation (2.1) can have
either two real solutions for 0 > z > −exp(−1), in which case they are W0(z) and W−1(z), or
it can have only one real solution for z � 0, this being W0(z) while W−1(z) is now complex,
or no real solutions for −∞ < z < −exp(−1). W0(z) and W−1(z) are the only branches of
W that take on real values.

A brief survey of the properties of the principal branch W0(z) will be sufficient for our
purpose. Firstly, W0(z) is analytic at z = 0. This follows from the Lagrange inversion theorem
[11]. Its power series about the point z = 0 reads as

W0(z) =
∞∑

n=1

(−n)n−1

n!
zn. (2.2)

The radius of convergence of the series (2.2) is equal to e−1 as it is easily shown using the
Cauchy test and, within the circle of convergence, |W(z)| < 1. As a consequence of the
relation (2.1) one has

W ′
0(z) = W0(z)

z(1 + W0(z))
(2.3a)

=
∞∑

n=1

(−n)n−1

(n − 1)!
zn−1 (2.3b)



Applications of the Lambert W function to classical statistical mechanics 10433

where the radius of convergence of the series (2.3b) is again equal to e−1. Lagrange
theorem gives more than equation (2.2); it allows us to obtain power series for Wα

0 (z), 1/(1 +
W0(z)), exp(αW0(z)), etc for z within the circle of convergence of W0(z) [3]. In particular,
the power series of the function U0(z) defined to be W0(z) + W0(z)

2/2 is given by

U0(z) =
∞∑

n=1

(−1)n−1nn−2

n!
zn(|z| < e−1). (2.4)

Note that it follows from equation (2.3a) that

zU ′
0(z) = W0(z). (2.5)

W0(z) has a second-order branch point at z = −e−1 which it shares with both W1(z)

and W−1(z) and its branch cut is conveniently chosen to be {z : −∞ < z � −e−1} with the
convention that W0(z) is defined on the upper lip of the branch cut. The behaviour of W0(z)

about the branch point is given by the series [1]

W0(z) = −1 + p − 1
3p2 + 11

72p3 + · · · (2.6)

where p = √
(2(ez + 1) (the series converges for |p| <

√
2).

In physics, it is quite common (and sometimes enlightening) to write dispersion relations
for functions having a branch cut such that W0(z) and U0(z) [12]. We show in the appendix
that, in the present case, these relations can be recast under the form

W(U)0(z) =
∫ −e−1

−∞
gW(U)(s) ln

(
1 − z

s

)
ds (2.7a)

gW(U)(s) = − 1

π

d

ds
Im[W(U)(s)] (2.7b)

where z is an arbitrary complex number which however is not on the branch cut. These
equations convey the interpretation of W0(z) (resp. U0(z)) as the two-dimensional complex
electric potential created by a distribution of charges gW(s) (resp. gU(s)) located on the branch
cut. Moreover, we show in the appendix that the distribution gW(s) is normalized to unity
(cf equation (A.14)) while the total charge of the charge distribution gU(s) is infinite. Other
physical interpretations of the relations (2.7) will be discussed in forthcoming developments.

3. The Tonks gas

In this section we consider the Tonks gas, i.e. a 1D fluid of hard rods of length σ [8]. The
equation of state (EOS) is known exactly:

χ ≡ βP = ρ

1 − ρσ
(3.1)

(P pressure, β = 1/kT , T temperature, ρ number density). Of course 0 < ρσ < 1. For
ρσ → 0 one recovers the EOS of the ideal gas, while for ρσ → 1, which corresponds to
the close packing of the hard rods, the pressure diverges. Less trivial is the expression of the
pressure as a function of the activity z. Recall that z = exp(βµ) where µ is the chemical
potential and we have assumed that the deBroglie thermal wavelength 
 = 1. Starting from
the thermodynamic relation [13]

ρ = z
d

dz
χ (3.2)

it is not difficult to obtain the relation [9]

σχ eσχ = σz. (3.3)
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A priori equation (3.3) is valid only for real positive values of z but it allows us to define the
pressure χ(z) in the complex plane of the activities by analytic continuation. The authors of
[9] did not know the Lambert function as we do; clearly one has

χ(z) = 1

σ
W0(σz) (3.4)

since the other branches Wk of Lambert W will not give a real pressure for real chemical
potentials µ. The Mayer expansions for the pressure and the density of the Tonks gas are
therefore obtained by copying out equations (2.2) and (2.3b):

χ(z) =
∞∑

n=1

bnz
n (3.5a)

ρ(z) = 1

σ

W0(σz)

1 + W0(σz)
=

∞∑
n=1

nbnz
n (3.5b)

bn = (−nσ)n−1

n!
. (3.5c)

The results of section 2 on Lambert W enable us to conclude that

1. The radius of convergence of the Mayer series (3.5a) and (3.5b) is R = 1/eσ . Within the
circle of convergence |χ(z)| < σ−1.

2. The pressure χ(z) is singular at the point z = −R of the circle of convergence, i.e. the
branch point of W0(σz), in agreement with one of the conclusions of the second theorem
of Groeneveld [14].

3. χ(z) has a branch cut on the negative real axis: −∞ < s � −R. It can be identified with
the distribution of zeros of the grand partition function in the thermodynamic limit [15, 16].
The distribution of the Yang–Lee zeros is given by g(s) = gW(σs) = −Im W ′

0(σ s)/π

(cf equations (2.7a) and (A.13a)). g(s) is a positive and increasing function over the
interval −∞ < s < −R which behaves as g(s) ∼ −1/(σs ln|s|)2) for s → −∞ and as
g(s) ∼ √

e/2/(πx1/2) for x = −R − x, x → 0+; therefore the integral of g(s) over the
interval −∞ < s < −R is convergent and equal to σ (cf equation (A.14)).

4. For an arbitrary z (however not on the branch cut) the pressure χ(z) may be seen as the
2D complex electrostatic potential created by the charge distribution g(s). It follows from
equations (2.7a) and (A.13a) that χ(z) takes the form proposed by Yang and Lee [15, 16],

χ(z) =
∫ −R

−∞
g(s) ln

(
1 − z

s

)
ds (∀z not on the cut −∞ < s � −R). (3.6)

A close examination of their paper reveals that the derivation of equation (3.6) given by
Hauge and Hemmer is restricted to a point z inside the circle of convergence.

It is amusing to check the various conclusions of second theorem of Groeneveld [14]. Recall
that for a d-dimensional classical fluid of particles interacting via positive pair potentials
ϕ(rij ) � 0 such that (twice) the second virial coefficient

f =
∫

dd
r(exp(−βϕ(r)) − 1) (3.7)

converges, the radius of convergence R of the virial series (3.5a) and the Mayer coefficients
bn satisfy the following inequalities:

1

e|f | � R � 1

|f | (3.8a)
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1

n
� bn

f n−1
� nn−2

n!
. (3.8b)

In the present case f = 2b2 = −σ , and one easily checks that R = 1/eσ and bn as given by
equation (3.5c), do satisfy the Groeneveld inequalities (3.8).

We end this section by determining the Helmholtz free energy per unit volume βf (ρ)

as the Legendre transform of βP viewed as a function of the reduced chemical potential
ν ≡ βµ = ln z (see e.g. [17]). It follows from equation (A.5) of the appendix that

βf (ρ) = sup
ν∈R

(νρ − χ(eν))

= ρ(ln ρ
 − 1) − ρ ln(1 − ρσ). (3.9)

Note that we have restored 
 to make the argument of the ln dimensionless. βf (ρ) is a strictly
convex function of the density defined for 0 < ρσ < 1. The first term on the RHS of the
equation is the Helmholtz free energy per unit volume of the ideal gas while the second one is
the excess free energy. The analytic continuation of βf (ρ) to complex densities is obtained
by defining βf (ρ) according to equation (3.9) where ln is the principal branch of the natural
logarithm for βf (ρ) must take on real values for ρ ∈ R, 0 < ρσ < 1. βf (ρ) is then a
multivalued function with two branch cuts −∞ < ρ � 0 and σ−1 � ρ < +∞.

4. Weak- and long-range repulsion

The EOS of a gas of particles interacting via the pair potential (1.1) is known exactly and
given by [9]

χ ≡ βP = ρ +
a

2
ρ2 (4.1)

where

a = βφ̃(0) ≡
∫

d3
r βφ(r) (4.2)

is a positive, γ -independent constant. Here ρ can take on all non-negative real values. It is
not difficult to obtain the relation between the density and the activity which reads as [9]

z = ρ eaρ. (4.3)

Therefore, since for a real z the density must be real

ρ = 1

a
W0(az) (4.4)

and, by integration of the thermodynamic relation (3.2)

χ(z) = 1

a
U0(az). (4.5)

The pressure and the density for complex activities are obtained by analytical continuations
of equations (4.4) and (4.5). The virial series for χ(z) and ρ(z) follow from equations (2.2)
and (2.4),

χ(z) =
∞∑

n=1

(−a)n−1nn−2

n!
zn (4.6a)

ρ(z) =
∞∑

n=1

(−a)n−1nn−1

n!
zn. (4.6b)
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The radius of convergence of these two series is R = (ae)−1 and it satisfies the first Groeneveld
inequality (3.8a). One also checks that the coefficients of the power series (4.6a) do satisfy
the second Groeneveld inequality (3.8b). χ(z) has a branch cut on the negative real axis:
−∞ < s � −R. For any complex activity z not on the cut, it can be written once again under
the form proposed by Yang and Lee [15, 16] (cf equation (A.13b)),

χ(z) =
∫ −R

−∞
g(s) ln

(
1 − z

s

)
ds (4.7)

where

g(s) = gU(as) = − 1

πas
ImW0(as). (4.8)

It follows from the analysis given in the appendix that the function g(s) is not integrable on the
cut (it behaves as −1/as for s → −∞). Recall that, strictly speaking, the theory of Yang and
Lee is valid only for interactions with a hard-core contribution. In this case the grand partition
function � for a finite volume V is a polynomial in z. The distribution g(s) of its zeros after
the passage to the thermodynamic limit allows us to rewrite χ(z) ≡ ln �/V under the form
(4.7), where g(s) is normalizable [9, 15, 16]. For soft interactions as those considered in this
section, the reasoning breaks down, leaving us with a non-normalizable distribution g(s) (one
can pack an infinite number of particles in a finite volume and the density ρ is not bounded).

Finally the Helmholtz free energy per unit volume βf (ρ) is computed as the Legendre
transform of χ(eν). It follows from equation (A.6) of the appendix that

βf (ρ) = sup
ν∈R

(
νρ − 1

a
U0(a eν)

)

= ρ(ln ρ
3 − 1) +
a

2
ρ2. (4.9)

βf (ρ) is a strictly convex function of ρ on the interval 0 < ρ < +∞.

5. Repulsive interactions: a field theoretical approach

We consider the statistical mechanics of a system made of N classical point particles interacting
via pair potentials of the form

v(r) = ϕ0(r) + ϕ(r) (5.1)

where ϕ0(r) is some reference potential (e.g. a hard sphere repulsion for instance) and ϕ(r)

admits a positive, well-defined Fourier transform ϕ̃(k) � 0. ϕ0(r) and ϕ(r) are supposed
to meet all the requirements which are necessary for the existence of a thermodynamic limit
(TL) [18].

We denote by  the domain occupied by the molecules of the fluid. It will be convenient
to assume that  is a cube of side L with periodic boundary conditions (PBC). In a given
configuration ω = (N; 
r1 . . . 
rN) the microscopic density of particles reads as

ρ̂(
r) =
N∑

i=1

δ(3)(
r − 
ri) (5.2)

and its Fourier transform

ρ̂
k =
N∑

i=1

exp(−i
k · 
ri). (5.3)
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The configurational potential energy of the system can be decomposed as

βV (ω) = βV0(ω) − NνS +
β

2
〈ρ̂|ϕ|ρ̂〉 (5.4)

where V0(ω) is the configurational energy of the reference system, νS ≡ βϕ(0) a self-energy
contribution and

〈ρ̂|ϕ|ρ̂〉 ≡
∫



d3
r1 d3
r2 ρ̂( 
r1)ϕ(
r1, 
r2)ρ̂( 
r2). (5.5)

We shall work in the grand canonical (GC) ensemble. We denote by µ the chemical
potential and by ψ(
r) an external potential. The local chemical potential will be noted as
ν(
r) = β(µ − ψ(
r)). Performing a Kac–Siegert–Stratonovich–Hubbard–Edwards (KSSHE)
transform [19–23] one can show that the GC partition function can be recast under the form
of a functional integral [10]

�[ν] = N−1
∫

Dξ exp(−H[ξ ]) (5.6)

where Dξ is the functional measure and the action H[ξ ] of the KSSHE field theory reads as

H[ξ ] = 1

2β
〈ξ |ϕ−1|ξ 〉 − log �0[ν̄ + iξ ] (5.7)

where ν̄ = ν + νS and �0 is the GC partition function of the reference system. The field
ξ which enter equations (5.6) and (5.7) is a real scalar field. Note that, in the general case
where the sign of ϕ̃(k) is arbitrary, the action H involves two real scalar fields ξ+ and ξ− (or a
complex field ξ ) [10]. Finally, the normalization constant N is given by

N =
∫

Dξ exp

(
− 1

2β
〈ξ |ϕ−1|ξ 〉

)
. (5.8)

In [10] the potential ϕ0(r) of the reference system was chosen to be a hard-core potential of
diameter σ . Here we specialize to the case σ → 0 (or equivalently ϕ0 ≡ 0), i.e. we take for
the reference system the ideal gas. All the conclusions of [10] remain valid provided that the
TL of our system is well behaved. Note that the configuration energy (5.4) can be rewritten as

V (ω) = 1

L3

∑

k

|ρ̂
k|2ϕ̃(k) − N

2
ϕ(0). (5.9)

Therefore if ϕ̃(k) � 0 for all k and ϕ(0) > 0 (which will be assumed henceforth) then
V (ω) � −NB with B(≡ϕ(0)/2) > 0, i.e. the system is H-stable in the sense of Ruelle
and the TL exists [18]. Note that, conversely, if ϕ̃(k = 0) < 0, the system does not have
a thermodynamic behaviour and the introduction of a repulsive hard core is mandatory to
ensure the existence of a TL. Such potentials (i.e. hard core plus an attractive tail) can yield a
liquid–vapour transition as explained in [10]; in the case considered here (soft repulsive tail),
the possibility of such a transition has to be ruled out.

With the choice ϕ0 ≡ 0 the KSSHE action reads now

H[ξ ] = 1

2β
〈ξ |ϕ−1|ξ 〉 −

∫


d3
r eν̄(
r)+iξ(
r). (5.10)

We now turn our attention to the mean-field (MF) level of the theory. The MF or saddle-point
approximation is defined by the equation

�MF(ν) ≡ exp(−H(ξ̄ )) (5.11)

where at ξ = ξ̄ the action H is stationary. The stationary condition

δH
δξ(
r)

∣∣∣∣
ξ̄

= 0 (5.12)
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can be recast under the form of the implicit integral equation

ξ̄ (
r) = iβ
∫



d3
r ′ ϕ(‖
r − 
r ′‖) eν̄(
r ′)+iξ̄ (
r ′). (5.13)

Moreover the MF density of the fluid is given by the density of the reference fluid—here the
ideal gas—at the local chemical potential ν̄(
r) + iξ̄ (
r) [10], i.e.

ρMF(
r) = eν̄(
r)+iξ̄ (
r). (5.14)

In the case of a homogeneous system to which we stick from now, (i.e. ψ(
r) ≡ 0) the
solution of equation (5.13) is a constant ξ̄ which is clearly given by

ξ̄ = iWk(λz) (5.15)

where Wk is some branch of Lambert W, z the activity and

λ = βϕ̃(0) eνS (5.16)

from which it follows that

ρMF = Wk(λ)/βϕ̃(0). (5.17)

It remains to determine the branch of W. For real activities z, the MF density should be a
positive real number; it follows then from equation (5.17) that, necessarily, k = 0. The MF
pressure is easily derived from equation (5.11) with the result

χMF(z) = ln �MF/

= 1

βϕ̃(0)
U0(λz). (5.18)

Note that the MF equation of state takes the familiar form χMF(ρ) = ρ + βϕ̃(0)ρ2/2. Finally,
the MF free energy is obtained by a Legendre transform of χ(z), which gives

βfMF = ρ(ln(ρ
3) − 1) − ρνS + βϕ̃(0)ρ2/2 (5.19)

in agreement with the general expression of [10].
Some comments are in order.

1. The Taylor series of χMF(z) and ρMF(z) in terms of the activity z are once again given
by equations (2.2) and (2.4) with a radius of convergence equal to R = (λe)−1. For an
arbitrary complex activity z, the pressure χMF(z) is given by the dispersion relation (4.7).

2. We have shown elsewhere [10] that the one-loop order approximation of the KSSHE field
theory coincides with the random phase approximation (RPA) of the theory of liquids [13].
As is well known, for long-range potentials of the form (1.1) the RPA corrections to the
pressure vanish as γ → 0 [13]. Note that, in this limit, νS → 0 and ϕ̃(0) = φ̃(0); thence,
in the limit γ → 0, one recovers for the pressure, the free energy etc the expressions
derived in section 4. Stated otherwise, the MF-KSSHE theory is exact for infinitely weak
and long-range repulsive potentials.

3. We have shown in [10] that the MF pressure and free energy constitute exact bounds.
More precisely we have

∀z ∈ R χ(z) � χMF(z) ≡ U0(λz)/βϕ̃(0) (5.20a)

∀ρ > 0 βf (ρ) � βfMF(ρ) ≡ ρ(ln(ρ
3) − 1) − ρνS + βϕ̃(0)ρ2/2. (5.20b)
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6. Conclusion

In this paper we have discussed some applications of the Lambert W function to the theory
of liquids. In the case of 1D hard rods or infinitely weak long-range repulsive potentials, one
obtains a close expression for the complex pressure χ(z) as a function of complex activities in
terms of either W0(z) or the related function U0(z). The dispersion relations derived for W0(z)

and U0(z) in the appendix give a rigorous justification to the heuristic formula proposed by
Lee and Yang for χ(z) [15, 16]. We have also shown that, in the framework of the KSSHE
field theory of liquids, the MF pressure χ(z) of a gas of particles interacting via soft repulsive
potentials can be expressed in terms of the function U0(z).
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Appendix. New mathematical properties of Lambert W

A.1. Legendre transforms

Let us first consider the real function x �→ f (x) = W0(ex). By applying twice the formula
(2.3a) one finds

f ′(x) = f (x)

1 + f (x)
(A.1a)

f ′′(x) = f (x)

(1 + f (x))3
. (A.1b)

It follows from equation (A.1b) that f ′′(x) > 0 for all x ∈ R. Thence the function f is strictly
convex and one can define its Legendre transform Lf (ρ) (see e.g. [17]). By definition

Lf (ρ) = sup
x

(xρ − f (x)) (A.2)

or, more precisely

Lf (ρ) = x̄ρ − f (x̄) (A.3)

where x̄ is (the unique) solution of

ρ = f ′(x̄) = f (x̄)

1 + f (x̄)
. (A.4)

Therefore Lf (ρ) is defined for 0 < ρ < 1. It is also a strictly convex function, the Legendre
transform of which is f (x) (i.e. the Legendre transform is involutive). In order to get the
expression of Lf (ρ) one notes that equation (A.4) implies that f (x̄) = ρ/(1 − ρ) and that
x̄ = f (x̄) + ln f (x̄) which yields

Lf (ρ) = ρ (ln ρ − 1) − ρ ln(ρ − 1). (A.5)

Similarly it can easily be shown that the function x �→ h(x) = U0(ex) is strictly convex
and that its Legendre transform Lh(ρ) is given by

Lh(ρ) = ρ (ln ρ − 1) +
ρ2

2
. (A.6)

Note that Lh(ρ) is defined on 0 < ρ < ∞. Over this interval, Lh(ρ) is strictly convex.
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Figure 1. Solid line: contour of integration of equation (A.7). The small circle (dashed line) is
the circle of convergence of W0(z) about z = 0, the dot is the branch point and the thick solid line
is the branch cut. The point z is everywhere except on the cut.

A.2. Dispersion relations

We establish here the dispersion relations for the functions W0(z) and U0(z). Let us first
consider W0(z). It follows from the Cauchy theorem that

W0(z) = 1

2π i

∫
C
W0(s)

{
1

z − s
− 1

s

}
ds (A.7)

where C is the contour shown in figure 1 and z is not on the cut (−∞,−e−1). Indeed
W0(0) = 0 as follows from equation (2.2). We consider now equation (A.7) in the limit ε → 0
and R → ∞.

The asymptotic formula for large (complex) z, i.e., [1, 4]

W0(z) ∼ ln(z) − ln(ln(z)) (A.8)

where ln z is the principal branch of the natural logarithm, ensures that the contribution to
equation (A.7) from the large circle � tends to zero as its radius R tends to infinity (Jordan
lemma). Note that we have subtracted W0(0) = 0 from W0(z) in equation (A.7) precisely in
order to obtain this property. Therefore we have

W0(z) = 1

2π i

∫ −e−1

−∞

{
W0(s + iε)

[
1

s + iε − z
− 1

s + iε

]

−W0(s − iε)

[
1

s − iε − z
− 1

s − iε

]}
ds. (A.9)

As ε → 0, we can neglect the ±iε in the fractions that enter the RHS of equation (A.9)
(remember that z is not on the cut) and we get

W0(z) = 1

2π i

∫ −e−1

−∞
[W0(s + iε) − W0(s − iε)]

[
1

s − z
− 1

s

]
ds. (A.10)

With the convention that W0(s) is defined on the upper lip of the cut and by noting that
W0(s̄) = W0(s) (for s not on the cut) we infer from equation (A.10) that

W0(z) = 1

π

∫ −e−1

−∞
Im(W0(s))

[
1

s − z
− 1

s

]
ds. (A.11)



Applications of the Lambert W function to classical statistical mechanics 10441

The final step is to perform an integration by parts which yields

W0(z) =
[
Im(W0(s)) ln

(
1 − z

s

)]−e−1

−∞
+

∫ −e−1

−∞

−1

π

d

ds
Im(W0(s)) ln

(
1 − z

s

)
ds. (A.12)

Since, in one hand W0(−e−1) = −1 and, on the other hand, Im (W0 (−∞)) = π as can be
obtained for instance from the asymptotic behaviour (A.8) of W0(z), then the first contribution
to the RHS of equation (A.12) vanishes and we are left with

W0(z) =
∫ −e−1

−∞
gW(s) ln

(
1 − z

s

)
ds (A.13a)

gW(s) = − 1

π

d

ds
Im[W0(s)]. (A.13b)

Several comments are in place here.

(a) The function gW(s) is a positive increasing function on the cut (−∞,−e−1). For
s = −e−1 − x (x → +0), gW(s) ∼ √

e/2/(πx1/2) as can be seen from the series
expansion of W0(z) about the branch point (cf equation (2.6)). On the other hand
gW(s) ∼ −1/(s ln|s|)2) for s → −∞ as can be inferred from equation (A.8). Thence the
integral of gW(s) along the branch cut is convergent; more precisely∫ −e−1

−∞
gW(s) ds = [Im(W0(−∞)) − Im(W0(−e−1))]/π

= 1. (A.14)

(b) The dispersion relations for the function U0(z) are similar to equations (A.13a) for the
reasoning presented above can be reproduced without major changes. The distribution
gU(s) is again a positive function on the interval (−∞,−e−1). It is given by

gU(s) = −π−1 d(Im U0(s))/ds

= − Im W0(s)

πs
(A.15)

from which it follows that gU(−e−1) = 0 because W0(−e−1) = −1. Moreover, for
s → −∞ we have gU(s) ∼ −1/s with the consequence that the integral of gU(s) along
the branch cut is divergent to +∞.
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